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Abstract 

This paper introduces new methods for building principal component analysis (PCA) 

models with missing data: projection to the model plane (PMP), known data regression 

(KDR), KDR with principal component regression (PCR), KDR with partial least 

squares regression (PLS) and trimmed scores regression (TSR). These methods are 

adapted from their PCA model exploitation version to deal with the more general 

problem of PCA model building when the training set has missing values. A 

comparative study is carried out comparing these new methods with the standard ones, 

such as the modified nonlinear iterative partial least squares (NIPALS), the iterative 

algorithm (IA), the data augmentation method (DA) and the nonlinear programming 

approach (NLP). The performance is assessed using the mean squared prediction error 

of the reconstructed matrix and the cosines between the actual principal components 

and the ones extracted by each method. Four data sets, two simulated and two real ones, 

with several percentages of missing data, are used to perform the comparison. 

Keywords: Missing data, PCA model building, PCA model exploitation. 

 

 1. Introduction 

Multivariate data sets are usually arranged in matrices having non-registered cells, i.e. 

missing values. Missing data (MD) can appear in a wide range of contexts and for a 

different number of reasons: respondents not answering to some questions in surveys, 

values outside the instrument range or missing owing to malfunctions of the sensor, 

failure in the communication between the instrumentation and the digital control system 

(DCS), sensor with different sampling rates, errors during data acquisition, and so on 
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[1,2]. In model building stages, in chemometrics environments, practitioners usually 

deal with 5-20% of missing values. In complex industrial processes, where hundreds of 

variables are collected per batch, 30-60% of missing data can appear in their historical 

data sets. Finally, with the paradigm of Big Data, thousands of variables are collected 

for a huge set of individuals, having sometimes more than 70% of missing values in 

their data sets. 

Principal component analysis (PCA) is one of the most used chemometrics tools for 

multivariate data analysis. In this context, two problems related to missing data appear: 

(1) exploiting fitted PCA models when some measurements are missing in new 

observations, i.e. the model exploitation problem (PCA-ME); and (2) building PCA 

models from data sets with missing measurements, i.e. the model building problem 

(PCA-MB). 

In PCA-ME a lot of methods have been reported in the literature. Wise and Ricker [3] 

present a method that consists of imputing the values that minimise the squared 

prediction error (SPE) for the new incomplete observation, based on the known PCA 

model. Nelson et al. [4] study and compare several methods: the single component 

projection method (SCP), the projection to the model plane method (PMP) and the 

conditional mean replacement method (CMR). Walczak and Massart [5] study the 

adaptation of the iterative algorithm (IA) to the prediction of scores for new objects 

with missing elements. Arteaga and Ferrer [6] also introduce several methods: the 

trimmed scores method (TRI), the known data regression method (KDR) and the 

trimmed scores regression method (TSR). Additionally, they show that the regression-

based methods (KDR and TSR) are statistically more efficient than the other methods 

studied. Arteaga and Ferrer [7] propose a framework that allows writing the regression-

based methods by a unique expression, function of a key matrix. 

Regarding PCA-MB there are two methods that are frequently used by the practitioners. 

The first one consists of adapting the nonlinear iterative partial least squares algorithm 

(NIPALS) [8] to deal with incomplete observations by performing the iterative 

regressions using the present data and ignoring the missing data [9]. The second one is 

the aforementioned IA [5] that basically consists of filling in the missing data with the 

predictions obtained from previous PCA models iterated recursively until convergence. 

Other methods rely on maximum likelihood-based estimations of missing data, like the 

expectation maximization (EM) algorithm [10-12]. A more complex method is data 

augmentation (DA) [10-13]. DA is a multiple imputation method, i.e. for each missing 
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value several values are imputed randomly, and it requires the computation of prior 

distributions of the parameters. Both EM and DA are not so widely used as the previous 

ones (NIPALS or IA). The reason is that the usual chemometrics data sets have strongly 

correlated variables with a low number of observations. The use of either DA or EM 

implies the inversion of the covariance submatrix corresponding to the known variables 

given an observation, which in these data sets often is not feasible due to submatrices 

are singular. A recent approach for PCA-MB with MD is the nonlinear programming 

approach (NLP). In this method the PCA model is obtained solving a nonlinear 

programming problem, in which the errors between the non-missing values and the 

model estimations are minimised [14]. 

In a recent paper [15], Liu and Brown compared the performance of several methods: 

the singular value decomposition of Krzanowski [16], the general iterative principal 

component imputation (GIP) [17], the multiple imputation by chained equations 

(MICE) [18], and two regularized versions of the known EM algorithm: one based on 

ridge regression (r-EM) [19] and the other one based on a truncated total least squares 

regression (t-EM) [20]. Some similarities can be drawn from these methods to the 

aforementioned ones. The GIP algorithm basically consists of filling in the missing data 

with the predictions obtained from a PCA model on the available data, and then iterated 

recursively until convergence, so it is equivalent to the IA. MICE is similar to the KDR 

adaptation for PCA-MB, the former performed variable-wise, the latter observation-

wise. r-EM overcomes the problem of the inversion of the covariance matrix of the 

available data in EM by using ridge regression, while KDR uses the pseudoinverse (see 

Sections 2-3). The t-EM method is equivalent to the PMP method for PCA-MB. The 

KDR and PMP adaptations from model exploitation to model building will be presented 

in the next section. The equivalences between GIP, MICE, t-EM and IA, KDR, PMP, 

respectively, are shown in Appendix A. 

There are also other imputation methods compared in the literature [21] that are strongly 

not recommended, like the listwise deletion (in which any observation with missing 

values is removed) and the unconditional mean imputation. The former implies a huge 

loss of information, leading to loss of precision and bias. The latter distorts the 

multivariate empirical distribution of the samples, i.e. tends to deform nonlinear 

quantities (e.g. variances, covariances) [2]. The nearest neighbour method has been also 

suggested to fulfil the missing values in incomplete datasets [22], however, its 

applicability with high percentages of missing values is limited.  
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The presence of outliers may considerably affect the performance of MD imputation 

methods. Different approaches have been proposed in the literature dealing 

simultaneously with missing data and outliers [22-25]. However, this is out of the scope 

of this paper and would deserve future research. 

Based on the good performance of the regression-based methods in the model 

exploitation context, the main goal of this paper is to verify if this is also true in the 

model building context. In this paper we propose new methods for building PCA 

models with missing data by adapting PCA-ME methods to deal with the more general 

problem of PCA-MB, when the training set has missing values. The new adapted 

methods proposed here are PMP, KDR, KDR with principal component regression 

(PCR), KDR with partial least squares regression (PLS) and trimmed scores regression 

(TSR). They are all introduced in Section 2. In order to evaluate these new methods 

against the established ones (NIPALS, IA, DA and NLP), four data sets (two simulated 

and two actual ones) are employed to first generate missing values in an incremental 

manner. The criteria to assess the different methods are the mean squared prediction 

error (MSPE) of the reconstructed data set and the cosines between the actual principal 

components and the ones extracted by each method. This is illustrated in Section 3. 

Finally, Section 4 presents the conclusions of the study. 

 

2. Methodology  

Let X be an N by K matrix with missing values where 𝐱!! = 𝑥!!   …   𝑥!"  is the i-th row 

containing the information for observation i, and 𝑥!" is the value of the j-th variable for 

observation i. We define the missing data indicator matrix M as the binary N by K 

matrix such that 𝑚!" = 1 if 𝑥!"  is missing, and 𝑚!" = 0 if 𝑥!" is known. The matrix 𝐌 is 

the complement of M, that is, 𝑚!" = 1−𝑚!". And finally, let Z denote the resulting X 

matrix after filling in the unknown values with zeroes, that is, 𝐙 = 𝐌 ∘ 𝐗, where ∘ is the 

Hadamard element wise-product. 

A common procedure for building a PCA model from X is the known iterative 

algorithm (IA) [5] that consists of filling in the missing data with initial values (usually 

zeros, although other imputations such as the mean of the known values of the 

corresponding column or the mean of the corresponding rows and columns are also 

used), yielding a reconstructed data set from which a PCA model is fitted. By replacing 

the original missing data by their predictions from this PCA model, a new reconstructed 
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data set is obtained, and a new PCA model is fitted. This process is iterated until 

convergence of the predicted values for the missing data, as shown in Figure 1. 

 

Figure 1. IA method in PCA-MB with missing data. 

Walczak and Massart [5] introduce an adaptation of the IA for estimating the scores of 

new incomplete observation from a pre-built PCA model, fixed and known (i.e. model 

exploitation). This method has the following structure: i) fill in the missing positions of 

the new observation with an initial estimate; ii) predict the scores for the filled-in 

observation, using the loadings matrix P from the fitted PCA model; iii) re-estimate the 

missing values by employing the predicted scores and the loadings of the known PCA 

model; and iv) iterate until convergence. 

Consider that the new observation 𝐱! has some unmeasured variables and these can be 

taken to be the first R elements of the row vector, without loss of generality. Thus, the 

vector can be partitioned as 𝐱! = 𝐱#!  𝐱∗! , where 𝐱#! denotes the missing 

measurements and 𝐱∗! the observed variables. This induces the following partition in X: 

𝐗 = 𝐗#  𝐗∗  where 𝐗# is the submatrix containing the first R columns of X 

(corresponding to the variables that are missing in 𝐱!), and 𝐗∗ accommodates the 

remaining 𝐾 − 𝑅 columns (corresponding to the observed variables in 𝐱!). 

Likewise, the loadings matrix P can be partitioned as 𝐏 = 𝐏#
𝐏∗

, where 𝐏# is the 

submatrix made up of the first R rows of P, and matrix 𝐏∗ contains the remaining 𝐾 − 𝑅 

rows. These induced partitions are illustrated in Figure 2. 

 

fill in the md with 0's Estimate the PCA model

tt XX =+1

Check for convergence

No

Yes

t

t

t

TT
PP
mm

=

=

=

ˆ
ˆ
ˆ

Replace the previous md inputs

PCA Approx to Xt

tt XMZX ˆ
1 !+=+

TTˆ
tttNt PTm1X +=ttttNt EPTm1X ++= TT

1+= tt

0=t ZX =tXMZ !=



 6 

 

Figure 2. Data set partition induced by observation xT. 

Arteaga and Ferrer [6] show that, under general conditions, the IA adaptation from 

Walczack and Massart [5] is equivalent to the projection to the model plane (PMP) 

estimator, studied by Nelson et al. [4], that is, the least square estimator based on the 

observed variables: 𝛕 = 𝐏∗!𝐏∗ !𝟏𝐏∗!𝐱∗, where 𝛕 is the estimated vector of scores for 

observation xT. Figure 3 shows a flow diagram of this IA adaptation. Note that the 

known part of the new individual,  𝐱∗!, is assumed to be centred with the mean of the 

corresponding columns of the X matrix,  𝐗∗. Note also that in this adaptation of the IA 

the PCA model does not change, and thus loadings in matrix P are fixed. 

 

Figure 3. IA method in PCA-ME for a new incomplete observation.  
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From this equivalence we can state that, in model exploitation, the PMP estimator 

summarises the iterations of the IA method in one step. 

Based on these results, in this paper we propose to adapt the IA method in PCA-MB 

from Figure 1, by replacing the prediction of missing values from the PCA model to 

that resulting when we treat each incomplete row in the data set as a new observation 

with missing values, and apply the PMP method for PCA-ME. This is illustrated in 

Figure 4. As was mentioned in the Introduction section, the PMP adaptation to PCA-

MB uses the same regression coefficients for each incomplete observation as the t-EM 

algorithm [20]. Note that in this case the scores and loadings matrices T and P, 

respectively, change at each iteration.  

 

Figure 4. PMP method adapted for PCA-MB with missing data. 

Arteaga and Ferrer [6] also present two new regression-based methods for estimating 

the scores of a new incomplete observation: the known data regression (KDR) method 

and the trimmed scores regression (TSR) method. 
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1. Fit the regression model 𝐗# = 𝐗∗𝐏∗ 𝐁+ 𝐔, where 𝐗∗𝐏∗ is the trimmed scores 

matrix, i.e. the score matrix that corresponds only to the known variables and their 

associated loadings (note that 𝐓 = 𝐗𝐏 = 𝐗∗𝐏∗ + 𝐗#𝐏#), yielding 

𝐁 = 𝐏∗!𝐗∗!𝐗∗𝐏∗ !!𝐏∗!𝐗∗!𝐗#. 

2. Estimate the missing part 𝐱#! as 𝐱# = 𝐗#!𝐗∗𝐏∗ 𝐏∗!𝐗∗!𝐗∗𝐏∗ !!𝐏∗!𝐱∗, that is, 

𝐱# = 𝐒#∗𝐏∗ 𝐏∗!𝐒∗∗𝐏∗ !!𝐏∗!𝐱∗. 

Arteaga and Ferrer [7] show that TSR and KDR methods are particular cases of a 

general framework of methods derived from the generalized regression model 

𝐗# = 𝐗∗𝐋 𝐁+ 𝐔, where the key matrix L takes different expressions depending on 

which method is applied. The key matrix for the KDR method is the identity matrix, 

𝐋 = 𝐈!!!; in KDR with principal component regression (PCR), 𝐋 = 𝐕!:!, where V is 

the eigenvector matrix of 𝐒∗∗ and 𝜌 ≤ 𝑟𝑎𝑛𝑘 𝐒∗∗ ; in KDR with partial least squares 

(PLS), 𝐋 =𝐖∗, where 𝐖∗ is the loadings matrix that allows writing the PLS scores 

𝐓!"# as 𝐓!"# = 𝐗∗𝐖∗ in the PLS model for estimating 𝐗# from 𝐗∗; finally, for the TSR 

method, 𝐋 = 𝐏∗. 

To adapt the PCA-ME framework methods for PCA-MB we only need to substitute, in 

the IA adaptation (Figure 4), the estimation of the missing part of each incomplete 

observation 𝐲!,!# = 𝐏!# 𝐏!∗!𝐏!∗ !!𝐏!∗!𝐲!∗ by the expression 𝐲!,!# = 𝐒!#∗𝐋! 𝐋!!𝐒!∗∗𝐋! !!𝐋!!𝐲!∗. 

This is illustrated in Figure 5. 

 

Figure 5. Regression-based framework adapted for PCA-MB with missing data. 

Assuming data follows a multivariate normal distribution the adaptation of the KDR 

method results in the known EM algorithm [10-12]. The other adapted framework 

members (i.e. KDR with PCR, KDR with PLS, and TSR) are approximations to KDR 

t = 0XMZ !=
fill in the md with 0's

ZX =t
T
tNtt m1XY −= tttt EPTY += T

Remove the mean Estimate the PCA Model

For each incomplete row i

( )T
1 tNtt m1YMZX ++=+ !tt XX =+1

Check for convergence

No

t = t + 1

Yes

t

t

t

TT
PP
mm

=

=

=

ˆ
ˆ
ˆ

Replace the previous md inputs

( ) *T1**T#*#
, ittttttti yLLSLLSy −
=



 9 

method that are useful when the covariance matrix 𝐒∗∗ is ill-conditioned or singular, 

because the matrix L makes 𝐋!𝐒∗∗𝐋 to have best conditioning properties than 𝐒∗∗. 

Note that in all the cited approximations, the key matrix 𝐋! depends on the missing data 

combination. This implies that, at each iteration, two incomplete observations with 

different missing data combinations require two different 𝐋! matrices. In KDR and TSR 

methods this is not a problem because in KDR 𝐋! is the identity matrix, and in TSR 𝐋! 

is 𝐏∗, that is, a submatrix of P. Nevertheless, in KDR with PCR a singular value 

decomposition for each missing data combination at each iteration is needed, and in 

KDR with PLS, a PLS regression for each missing data combination at each iteration 

has to be fitted. This causes PCR and PLS adaptations to be more computing time 

demanding than KDR and TSR adaptations. Nevertheless, as commented before, KDR 

may not be useful in practice due to ill-conditioning or singular problems of the 

covariance matrix 𝐒∗∗. 

The previously studied imputation methods impute a unique number for each missing 

value. These single imputation methods permit us to estimate the parameter’s values, 

but ignore the variability of the estimates, leading to underestimation of standard errors 

and confidence intervals for the estimated parameters. That is, the single value being 

imputed cannot reflect the sampling variability around the actual value. Multiple 

imputation [12,27] overcomes this disadvantage. Multiple imputation, basically, creates 

several (M) values for each missing value representing a distribution capable of 

reflecting the sampling variability. Then, we have M complete data sets that we can 

analyse with the standard statistical techniques to estimate their parameters of interest. 

This allows calculation of variances of the parameters by combining the variability of 

estimates from within each imputed data set with the variability of the estimates across 

M imputed data sets. Rubin [26] shows how to combine both sources of variability in 

order to obtain confidence intervals for the estimated parameters. 

Multiple imputation is based on three main assumptions: a probability model on 

complete data (observed and missing values), a prior distribution reflecting the 

uncertainty of the parameters for the imputation model, and that the missing data 

mechanism is ignorable (i.e. Missing at Random: MAR or Missing Completely at 

Random: MCAR). 

Multiple imputation can be made in several manners, but the most popular is the data 

augmentation (DA) algorithm [13]. This is an iterative process that alternatively fills in 

the missing data and makes inferences about the unknown parameters, but unlike the 
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EM algorithm, this is made in a stochastic or random fashion. DA first performs a 

random imputation of missing data under assumed values of the parameters, and then 

draws new parameters from a Bayesian posterior distribution based on the observed and 

imputed data. DA starts with some value of the set of parameters 𝚯, usually these initial 

estimates are obtained with the EM algorithm, and in iteration t alternates between two 

steps: 

I step (Imputation), draws 𝐗!# from their conditional distribution given 𝐗∗ and 𝚯!!!. 

P step (Posterior), draws 𝚯! from their posterior distribution given 𝐗∗ and 𝐗!#. 

where 𝐗!# is the missing part of X in iteration t, and 𝐗∗ is the known part of X that 

remains the same along iterations. The procedure of alternately simulating missing data 

and parameters creates a Markov chain that eventually stabilizes or converges in 

distribution [11] 

In practice, the length of the Markov chain should be long enough to assure stability 

(convergence) and thus no dependency on initial values. The EM algorithm is 

recommended in practice to provide initial estimates of model parameters 𝚯 and 

number of iterations that DA algorithm needs to converge. 

The EM algorithm converges to a single set of values and then the convergence can be 

easily assessed by checking the change in the parameter estimations from one iteration 

to the next. For DA, the algorithm converges to a probability distribution, not a single 

set of values. This makes it rather difficult to determine whether convergence has, in 

fact, been achieved [12]. The rate of convergence of the EM algorithm is a useful 

indication of the rate of convergence for DA. A good rule of thumb is that the number 

of iterations for DA should be at least as large as the number of iterations required for 

EM and then it is useful to run the EM algorithm before DA. 

Finally, López-Negrete de la Fuente et al. [14] present a new approach for PCA-MB 

with incomplete data sets. This methodology solves a nonlinear programming problem 

(NLP) (see Equation 1) using the IPOPT solver [27].  

𝑀𝑖𝑛 𝐌 ∘ 𝐗− 𝐓𝐏! 𝑭
𝟐

𝑠. 𝑡.
𝐩!!𝐩! = 𝛿!,! 𝑎, 𝑏 = 1, . . . ,𝐴
𝐭!!𝐭! = 0 𝑎 ≠ 𝑏  𝑎𝑛𝑑  𝑎, 𝑏 = 1, . . . ,𝐴
𝟏!𝐭! = 0 𝑎 = 1, . . . ,𝐴

 (1) 

where  𝛿!,! is the Kronecker delta and A is the number of PCs extracted by the PCA 

model. The objective function minimises the squared error between the known values 
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and their estimations from the PCA model, subject to the constraints defined by the 

PCA assumptions: the loadings have to be orthonormal, and the scores have to be 

orthogonal with zero mean.  

 

3. Comparative study 

In this section we compare the performance of different methods for PCA-MB with 

missing data (MD). The methods under study are the standard methods for PCA-MB: 

NIPALS and IA, and the proposed PCA-ME adapted methods: PMP and the regression-

based framework adapted methods (KDR, PCR, PLS and TSR).  

In order to improve the convergence properties, in the implementation of the above 

methods we have used pseudoinverse to calculate 𝐏!∗!𝐏!∗ !! in PMP, and 𝐋!!𝐒!∗∗𝐋! !! 

in the framework methods. 

The MATLAB implementations for PMP, KDR, PCR, PLS and TSR have been 

developed for the present paper (see Appendix C). The codes for IA and DA have been 

reproduced from the original papers (see [5] for IA and [11,13] and Appendix C for 

DA). For the NLP method we used its implementation in the Phi toolbox (version 1.7) 

[14]. 

On the following subsections four data sets with missing values are used. Two of them 

are simulated and the other two are taken from the literature. The strategy to generate 

the MD is the same in all of them. Nine incremental levels of MD are considered in 

each data matrix (5%, 10%, 15%, 20%, 30%, 40%, 50%, 60% and 70%). 80% and 90% 

of missing values are also included in the last example. And for each data set and 

percentage, 50 possible data sets are simulated, following missing completely at random 

(MCAR) mechanism [2]. Therefore, 1900 data sets are analysed in this study: 4 data 

sets times 9 MD levels (11 for the last example) times 50 possible data sets. The 

original data sets can be found in Appendix B. Supplementary Material. 

The principal performance criterion for each method is the mean squared prediction 

error MSPE (equation 2). 

𝑀𝑆𝑃𝐸 𝑀𝑒𝑡ℎ𝑜𝑑 =
𝑥!" − 𝑥!"!"#!!"

!!
!!!

!
!!!

𝑁𝐾  (2) 

where 𝑥!" is the predicted value for the j-th variable of the i-th observation in the 

prediction matrix 𝐗 = 𝐓𝐏! obtained from the complete data set; and 𝑥!"!"#!!" the 
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analogous prediction obtained after applying the corresponding method on the 

incomplete data set.  

In order to assess whether the differences among methods, in terms of MSPE, are 

statistically significant, a mixed-effects ANOVA model is fitted per each case study. 

The factors considered are the method, the percentage of missing values, and the 

simulated data set, being the latter nested to the percentage factor. Method and 

percentage are fixed-effects factors; the data set is a random-effect factor. Given the 

positive skewness of MSPE, a logarithmic transformation is used. This transformation 

also expands the differences for low percentages of MD, easing the visualization of the 

plots. In case any effect or interaction is statistically significant, the 95% LSD (least 

significance difference) intervals are calculated to assess which groups are different 

from others. 

In order to understand the degradation in the PCA model due to missing values the 

cosine between each loading vector obtained using the full data matrix and its 

corresponding from the incomplete data set is calculated. The closer to one it is, the 

more similar are both loadings for a particular component. However, if more than one 

PC is extracted from data, the cosines of further PCs are being strongly influenced by 

the previous ones, since they have to be orthogonal to the estimated first PC. 

3.1 Olive Oil data set 

This data set consists of the percentage composition of eight fatty acids: palmitic, 

palmitoleic, stearic, oleic, linoleic, linolenic, arachidic and eicosenoic, found in the lipid 

fraction of 572 Italian olive oils. In the original data set [28] there are nine collection 

areas from three different regions of Italy. In order to reduce the computation time, our 

data set is built with 75 randomly chosen wines from South Apulia. One PC is extracted 

from these data, explaining 59% of variance. 
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Figure 6. log(MSPE) (left) and cosines associated to the first PC (right) for the reconstructed Olive Oil data set 

from a PCA model with different methods: NIPALS, IA, PMP, TSR, KDR, PCR, PLS, DA and NLP. The missing 

values in the figure correspond to NaNs (which implies convergence problems for the method). Some other higher 

values are not shown (especially for the highest %) in order to appreciate the differences among the most accurate 

methods. Dashed ellipses mark the statistically significant differences between groups of methods, i.e. the differences 

exist between-groups, not within-groups.  

As shown in Figure 6, DA and KDR are statistically superior to all other methods from 

5-20% of missing data. There exist no significant differences between DA, KDR, PCR, 

PLS and TSR for further percentages. From 30% of MD onwards, NLP, PMP, IA and 

NIPALS perform statistically worse than the other methods. From 40% upwards NLP is 

unstable for some combinations of missing values, i.e. some missing values are poorly 

imputed and therefore the MSPE value and the cosine are strongly affected by them. 

NIPALS and PMP are unable to converge for high percentages of missing values (60-

70%). Some MSPEs are not shown on Figure 6 up to some percentage, e.g. NLP, in 

order to appreciate the differences among the most accurate methods. Figure 6 also 

shows that the degradation in cosine associated to the first PC matches the increment in 

MSPE.  

3.2 Diesel data set  

This data set is obtained from the Eigenvector Research Inc. data library 

(http://www.eigenvector.com/data/index.html). The data set contains the NIR spectra of 

several diesel fuels (N = 40) obtained at the Southwest Research Institute (SWRI) on a 

project sponsored by the U.S. Army [29]. The fuels were originally scanned from the 
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wavelength 750 nm to 1550 nm in 2 nm increments (K = 401 variables). Two PCs are 

extracted explaining 60% and 25% of variance in data, respectively. 

 

 

Figure 7. log(MSPE) (left) and cosines associated to the first PC (right) for each method in the Diesel data set. DA 

is not applicable in this data set. See Figure 6 caption for more details. 

DA is the only method that is unable to analyse the present data set, regardless the 

percentage of missing values. The main reason is the singularity of the S** matrix for 

the different combinations of missing values. This also affects the KDR method, which 

is statistically the worst in terms of MSPE (see Figure 7).  

NLP and NIPALS offer better results than KDR, but are statistically worse than the 

other methods for all percentages of missing values. NIPALS does not converge with 

70% of MD, and neither does NLP. TSR, PCR, PLS, PMP and IA show the best 

performances for 10-60% of missing data. For 70% of MD IA and PMP are statistically 

worse than the previous regression-based methods. These results are coherent with the 

degradation of the cosine of the first and second loadings (see Figure 7). The cosines of 

the second PC are included in Appendix B. 

3.3 Simulated data set 

A three-component multivariate data set is generated [30,31] to compare the 

performance of the different methods. This data set has ten variables (K = 10) and a 

hundred samples (N = 100), and follows a multivariate normal distribution with zero 

means and unit variances. We forced the highest eigenvalue of the correlation matrix to 

be 4.0, the second one 3.0 and the last one 2.0, explaining 40%, 30% and 20% of the 

variance from the ten variables, respectively. 
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Figure 8. log(MSPE) (left) and cosines associated to the first PC (right) for each method in the simulated data set. 

See Figure 6 caption for more details. 

In the simulated data set, PMP, NLP and NIPALS have again problems with the 

convergence (see Figure 8), the first one does not converge with 40% of MD, the 

second one with 50%, and the last one with 60%. Now, at early stages, there exist 

statistically significant differences between methods. KDR, jointly with DA, is 

statistically superior to all other methods with 5%-15% of missing values, being 

NIPALS the worst method. For medium and high percentages of MD, DA and KDR are 

not significantly superior to PCR, PLS and TSR. The performance of IA in this data set 

is coherent with the previous data sets, i.e. with low percentages of missing data its 

performance is similar to the regression-based methods, for higher percentages IA 

performs significantly worse. Again, the cosine degradations (Figure 8) agree with the 

results observed in MSPE. The cosines of the second-third PCs are included in 

Appendix B. 

A comment regarding the cosine values is here in due. A value of 0.9 implies a 

deviation of 25 degrees between the imputed and the actual PC, which is, in fact, a huge 

rotation of the basis, of the PCs. However, even when the cosines are below 0.9, the 

imputations of the best methods are still useful, based on their MSPE values. 

3.4 Big data set 

An additional data set, from the big data perspective [32], is analysed here. Using again 

[30,31] a simulated data set is generated with 10 million data entries (100000 

observations x 100 variables). 4 PCs are used to generate the data, explaining 35%, 

25%, 15% and 15% of the variance, respectively. In this dataset we decided to force the 
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methods to deal with even more missing values than in the previous datasets. Here, 80% 

and 90% of missing values are also simulated.  

Based on the results of the previous subsections we decided not to apply in this dataset 

the methods that have problems with convergence and/or instability, such as NIPALS, 

PMP and NLP. IA is applied here, since it is a fast imputation method and showed no 

problems with convergence in the previous data sets. DA was initially applied but since 

this method, jointly with KDR, PCR and PLS, are more time consuming than the rest of 

methods the imputation was not obtained in a reasonable time period. Therefore, only 

IA and TSR are applied to this data set. 

The MSPE results and the 1st PC cosines are depicted in Figure 9. The cosines of the 

2nd-4th PCs are included in Appendix B. We found statistically significant differences 

between both methods for all percentages. TSR offers a lower MSPE than IA for all 

simulations; however, this cannot be appreciated in Figure 9. It is interesting that the 

results with this huge data set are better than in the previous simulated one. This is due 

to the more individuals has the dataset, the more accurate are the estimations of the 

covariance matrices that TSR and IA perform internally, which implies that the 

estimation is more coherent that with less observations. It is worth noting that the 

imputation in the most extreme case, 90% of missing data, is indeed difficult, taking 

around an hour.  

As stated at the beginning of Section 3, the deviations of the last PCs, with respect to 

the true ones, are strongly affected by the deviations of the first ones. This is clearly 

seen in the cosines of 3rd-4th PCs (see Appendix B). However, the imputations 

performed by both IA and TSR show low MSPEs since the deviations of 1st-2nd PCs, 

the ones explaining more variance, are small. 
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Figure 9. log(MSPE) (left) and cosines associated to the first PC (right) for each method in the Big simulated data 

set. See Figure 6 caption for more details. 

 

4. Discussion and conclusions 

Trimmed Scores Regression (TSR) method performed extraordinarily well in all the 

data structures and missing data percentages analysed throughout this paper. This 

missing data imputation method, adapted here from the PCA model exploitation context 

to model building, represents the best compromise solution among prediction quality, 

robustness against data structure and computation time. From the other regression-based 

methods adapted here, the known data regression methods with PCR and PLS offer also 

good solutions, however, they are more time-consuming, since they fit additional PCR 

and PLS models. 

From the rest of the methods analysed here, Data Augmentation (DA) and KDR have 

excellent performances with thin data sets (i.e. more observations than variables). 

Nevertheless, they have two important drawbacks. The first one is that both methods, 

especially DA, since it is a multiple imputation method, are strongly more time 

consuming than, e.g. TSR. The second drawback is that with fat data sets (i.e. more 

variables than observations, typical in batch processes or with spectral data) DA is 

unfeasible, and KDR has the worst performance among the rest of the methods.  

The NIPALS method for missing data imputation, a procedure implemented in many 

commercial statistical packages such as ProMV [33], SIMCA-P [34] and PLS Toolbox 

[35], is unable to deal with most of the missing data scenarios analysed in this study. 

Regarding the rest of the methods, PMP and NLP have also convergence problems 
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when high percentages of missing data are generated in all datasets. IA is the only 

method, jointly with TSR, applied to the big data set, due to its fast performance in the 

previous data sets and its robustness against high percentages of missing data. However, 

its performance level in all four data sets is statistically worse than TSR's. 

Two key points in PCA model building with missing data are not addressed here. The 

first one is how the possible outliers are affecting the imputation performed by the 

missing data methods analysed here. The second one is the subtle issue of choosing of 

the appropriate number of principal components when the data set has missing values. 

These two points deserve future research. 

 

Acknowledgements 

Research in this study was partially supported by the Spanish Ministry of Science and 

Innovation and FEDER funds from the European Union through grant DPI2011- 28112-

C04-0, and the Spanish Ministry of Economy and Competitiveness through grant 

ECO2013-43353-R. The authors gratefully acknowledge Salvador García-Muñoz for 

providing the Phi toolbox (version 1.7) to perform the nonlinear programming approach 

(NLP) method. 

 

Appendix A. Methods equivalences. 

In this section, the equivalence between some methods described in [15] and the ones 

presented here are proven. The general iterative principal components imputation (GIP) 

[15,17] is equivalent to the Iterative Algorithm (IA) [5] extracting one principal 

component. The GIP steps are the following: 

1. A missing indicator matrix R is defined as 𝑟!" = 1 if 𝑥!" is observed, and 0 

otherwise. 

2. An initial guess for the missing data is imputed. 

3. The correlation matrix C is obtained using the available data, and then the 

largest eigenvalue λ, and its associated eigenvector v, is obtained. In this way, 

the first principal component score for sample i is 𝜏! = 𝑣!𝑥!"!
!!! , where K is 

the number of variables in the data set. 

4. The missing elements are replaced by their projection using the score, i.e. if 

𝑟!" = 0, then 𝑥!" = 𝜏!𝑣!.   
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5. Steps 3-4 are repeated until the consecutive imputed values are within the 

specified tolerance. 

The indicator matrix R is exactly the matrix 𝐌, used in IA (see Figure 1). The principal 

component scores are calculated in the same way as the estimation of the PCA model in 

IA (box 4 in Figure 1). And the projection for the missing values is basically the PCA 

approximation to Xt matrix (box 5 in Figure 1). Finally, the process is iterated using the 

same condition as in IA. Therefore, GIP method is mathematically equivalent to IA 

when one principal component is extracted. 

The main similarity between the so-called multiple imputation by chained equation 

method (MICE) defined in [15,18] and KDR is that the former works variable-wise and 

the latter observation-wise. The steps of MICE algorithm are detailed here: 

1. Initial guesses for all missing elements are provided. 

2. For each variable with missing elements, xj, the data are split into two sub-

vectors: xja a sub-vector that contains all available data, and xjm a sub-vector that 

contains all missing data. The available sub-vector xja is regressed on all other 

variables, which are restricted to the samples in xja; that is 

𝐱!" = 𝑓(𝐱!, . . . , 𝐱!!!, 𝐱!!!, . . . , 𝐱!). 

3. The missing sub-vector xjm is then predicted from the regression and its missing 

entries are replaced with the predictions from the regression. The regression 

procedure is repeated for all variables with missing elements.  

4. After all missing elements are imputed, the regressions and predictions are 

repeated until consecutive iterates are within the specified tolerance for each of 

the imputed values. 

In MICE the regression model is performed within each column, predicting the 

observations with the missing values from the observations with available data. KDR 

follows the same algorithm as MICE, but the data is split based on the missing and 

available values of an observation (see Figure 5, taking L as the identity matrix). Then, 

the calibration is performed between the submatrix of X corresponding to the missing 

elements in row i, X#, and the submatrix of available measurements, X*, following the 

expression 𝐗# = 𝐗#𝐁+ 𝐔, where B is the regression coefficients matrix and U is the 

residual matrix. The prediction step is also performed observation-wise: using the 

model between the missing and the available submatrices, the missing elements in row i 

are predicted based on its available measurements (see Figure 5). 
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Finally, the equivalence between the regularised t-EM method [15,20] and PMP [4] is 

drawn. t-EM algorithm is defined as follows: 

1. Estimate the covariance matrix, 𝚺. 

2. Calculate the singular value decomposition of the covariance matrix 𝚺 = 𝐕𝚲𝐕!.  

3. Build the regression model 𝐱! = 𝛍! + (𝐱! − 𝛍!)𝐁, being 

𝐁 = 𝐕!"(𝐕!"! 𝐕!")!!𝐕!", where the row vectors 𝐱!, 𝛍!, 𝐱! and 𝛍! are the 

estimated missing part of row x, the estimated mean of the missing part, the 

available measurements of x and its estimated mean vector, respectively. 

4. Iterate the process until convergence. 

Since in Figure 4, the rows of matrix X are represented by columns, the row-wise 

representation of the box 6 is 𝐲!#  ! = 𝐲!∗  !𝐏∗(𝐏∗  !𝐏∗)!!𝐏#  !. This equation, bearing in 

mind that the data in Figure 4 is previously mean-centred, is exactly the same as Step 3 

in t-EM, being 𝐏∗ the first q loadings (significant ones) of the available values of the 

covariance matrix (which are the same as in X matrix) and 𝐏# the first q loadings 

corresponding to the variables of the missing part. 

 

Appendix B. Supplementary material. 

The cosines of the 2nd PC of the diesel data set (Additional Figure 1), the cosines of the 

2nd-3rd PCs of the small simulated data set (Additional Figure 2) and the cosines of the 

2nd-4th PCs of the Big data set (Additional Figure 3) are available online. An Excel file 

(Additional File 1) with the original data sets is also included as additional material. The 

Big data set can be downloaded from http://mseg.webs.upv.es/Software_e.html. 

 

Appendix C. List of MATLAB codes for TSR and DA. 

TSR and DA source codes are provided here. The first method represents the best 

compromise solution between prediction quality, robustness against data structure and 

computation time. KDR, KDR with PCR and KDR with PLS can be easily computed 

using TSR source code by modifying the key matrix L (as shown in Methods section). 

DA source code is also included.  

% TSR SOURCE CODE: 

function [X,m,S,It,Xrec]=pcambtsr(X,A) 

% 

% Inputs: 
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% X: data matrix with NaNs for the missing data. 

% A: number of principal components. 

% 

% Outputs: 

% X: original data set with the imputed values. 

% m: estimated mean vector of X. 

% S: estimated covariance matrix of X. 

% It: number of iterations. 

% Xrec: PCA reconstruction of X with A components.  

% 

[n,p]=size(X); 

for i=n:-1:1, 

  r=~isnan(X(i,:)); 

  pat(i).O=find(r==1); % observed variables 

  pat(i).M=find(r==0); % missing variables 

  pat(i).nO=size(pat(i).O,2); % number of observed variables 

  pat(i).nM=size(pat(i).M,2); % number of missing variables 

end 

mis=isnan(X); 

[r c]=find(isnan(X)); 

X(mis)=0; 

meanc=sum(X)./(n-sum(mis)); 

for k=1:length(r), 

  X(r(k),c(k))=meanc(c(k)); 

end 

maxiter=5000; 

conv=1.0e-10; 

diff=100; 

It=0; 

while It<maxiter & diff>conv, 

  It=It+1; 

  Xmis=X(mis); 

  mX=mean(X); 

  S=cov(X); 

  Xc=X-ones(n,1)*mX; 

  if n>p, [U D V]=svd(Xc,0); else [V D U]=svd(Xc',0); end 

  V=V(:,1:A); 

  for i=1:n,            % for each row 

    if pat(i).nM>0,     % if there are missing values 

      L=V(pat(i).O,1:min(A,pat(i).nO)); % L is the key matrix 

      S11=S(pat(i).O,pat(i).O); 

      S21=S(pat(i).M,pat(i).O); 

      z1=Xc(i,pat(i).O)'; 
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      z2=S21*L*pinv(L'*S11*L)*L'*z1; 

      Xc(i,pat(i).M)=z2'; 

    end 

  end 

  X=Xc+ones(n,1)*mX; 

  d=(X(mis)-Xmis).^2; 

  diff=mean(d); 

end 

S=cov(X); 

m=mean(X); 

[u d v]=svd(S,0); 

P=v(:,1:A); 

T=(X-ones(n,1)*m)*P; 

Xrec=ones(n,1)*m+T*P' 

 

% DA SOURCE CODE 

function [DAm,DAS,mest,Sest,Y]=DataAugmentation(X,M,CL) 

%  

% Inputs: 

% X: data matrix with NaN for the missing data. 

% M: number of independent chains (we use M=10). 

% CL: length of each chain (we use CL=100). 

% 

% Outputs: 

% DAm:  estimated means for the M chains in M rows. 

% DAS:  estimated covariance matrices for the M chains DAS(1).co,..., 
DAS(M).co. 

% mest: estimated means (mest=mean(DAm)). 

% Sest: estimated covariance matrix (averaging DAS(1).co,..., 
DAS(M).co). 

% Y: original data set with the imputed values. 

% 

[n,p]=size(X); 

for i=n:-1:1, 

  r=~isnan(X(i,:));  

  pat(i).O=find(r==1); % observed variables 

  pat(i).M=find(r==0); % missing variables 

  pat(i).nO=size(pat(i).O,2); % number of observed variables 

  pat(i).nM=size(pat(i).M,2); % number of missing variables 

end 

mis=isnan(X);         % mis are the positions of the md in X 

[r c]=find(isnan(X)); % r and c store the row and the column for all 
the md 
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X(mis)=0;               % fill in the md with 0's 

meanc=sum(X)./(n-sum(mis)); % average of the known values for each 
column 

for k=1:length(r), 

  X(r(k),c(k))=meanc(c(k)); % fill in each md with the mean of its 
column 

end 

mini=mean(X); Sini=cov(X);   % initial mean vector an covariance 
matrix 

DAm=zeros(M,p); 

for run=1:M, 

  S=Sini; 

  m=mini; 

  for It=1:CL, 

    for i=1:n,              % for each row 

      if pat(i).nM>0,           % if there are missing values 

        m1=m(1,pat(i).O)';           % nOx1 

        m2=m(1,pat(i).M)';           % nMx1 

        S11=S(pat(i).O,pat(i).O);    % nOxnO 

        S12=S(pat(i).O,pat(i).M);    % nOx1 

        z1=X(i,pat(i).O)';           % nOx1 

        z2=m2+S12'*pinv(S11)*(z1-m1);% nMx1 

        X(i,pat(i).M)=z2';           % 1xp 

      end 

    end 

    m=mean(X); 

    S=cov(X); 

    [m,S]=DrawPost(m,S,10*n*n); 

  end 

  DAm(run,:)=m; 

  DAS(run).co=S; 

end 

mest=mean(DAm); 

Sest=zeros(p,p); 

for k=1:M, 

  Sest=Sest+DAS(k).co; 

end 

Sest=Sest/M; 

% Applies stochastic regression with the posterior of the mean (mest) 

% and the covariance matrix (Sest) 

for i=1:n,            % for each row 

  if pat(i).nM>0,     % if there are missing values 

    m1=mest(1,pat(i).O)';          % nOx1 

    m2=mest(1,pat(i).M)';          % nMx1 
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    S11=Sest(pat(i).O,pat(i).O);   % nOxnO 

    S12=Sest(pat(i).O,pat(i).M);   % nOxnM 

    z1=X(i,pat(i).O)';             % nOx1 

    z2=m2+S12'*pinv(S11)*(z1-m1);  %nMx1 

    X(i,pat(i).M)=z2';  % fill in the md positions of row i 

  end 

end 

Y=X; 

  

function [mpost,Spost]=DrawPost(m,S,n) 

d=chol(S/n); 

p=size(S,1); 

if n<=81+p, 

  x=randn(n-1,p)*d; 

else 

  a=diag(sqrt(chi2rnd(n-(0:p-1)))); 

  for i=1:p-1, 

    for j=i+1:p, 

      a(i,j)=randn(1,1); 

    end 

  end 

  x=a*d; 

end 

Spost=x'*x; 

mpost=(m'+chol(Spost/(n-1))*randn(size(S,1),1))'; 
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